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Abstract—A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the

same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For

example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain

of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge

transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In

recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing

and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we

discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask

learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning

research.

Index Terms—Transfer learning, survey, machine learning, data mining.
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1 INTRODUCTION

DATA mining and machine learning technologies have
already achieved significant success in many knowl-

edge engineering areas including classification, regression,
and clustering (e.g., [1], [2]). However, many machine
learning methods work well only under a common assump-
tion: the training and test data are drawn from the same
feature space and the same distribution. When the distribu-
tion changes, most statistical models need to be rebuilt from
scratch using newly collected training data. In many real-
world applications, it is expensive or impossible to recollect
the needed training data and rebuild the models. It would be
nice to reduce the need and effort to recollect the training
data. In such cases, knowledge transfer or transfer learning
between task domains would be desirable.

Many examples in knowledge engineering can be found

where transfer learning can truly be beneficial. One

example is Web-document classification [3], [4], [5], where

our goal is to classify a given Web document into several

predefined categories. As an example, in the area of Web-

document classification (see, e.g., [6]), the labeled examples

may be the university webpages that are associated with

category information obtained through previous manual-

labeling efforts. For a classification task on a newly created

website where the data features or data distributions may

be different, there may be a lack of labeled training data. As

a result, we may not be able to directly apply the webpage

classifiers learned on the university website to the new

website. In such cases, it would be helpful if we could

transfer the classification knowledge into the new domain.

The need for transfer learning may arise when the data
can be easily outdated. In this case, the labeled data
obtained in one time period may not follow the same
distribution in a later time period. For example, in indoor
WiFi localization problems, which aims to detect a user’s
current location based on previously collected WiFi data, it
is very expensive to calibrate WiFi data for building
localization models in a large-scale environment, because
a user needs to label a large collection of WiFi signal data at
each location. However, the WiFi signal-strength values
may be a function of time, device, or other dynamic factors.
A model trained in one time period or on one device may
cause the performance for location estimation in another
time period or on another device to be reduced. To reduce
the recalibration effort, we might wish to adapt the
localization model trained in one time period (the source
domain) for a new time period (the target domain), or to
adapt the localization model trained on a mobile device (the
source domain) for a new mobile device (the target
domain), as done in [7].

As a third example, consider the problem of sentiment
classification, where our task is to automatically classify the
reviews on a product, such as a brand of camera, into
positive and negative views. For this classification task, we
need to first collect many reviews of the product and
annotate them. We would then train a classifier on the
reviews with their corresponding labels. Since the distribu-
tion of review data among different types of products can be
very different, to maintain good classification performance,
we need to collect a large amount of labeled data in order to
train the review-classification models for each product.
However, this data-labeling process can be very expensive to
do. To reduce the effort for annotating reviews for various
products, we may want to adapt a classification model that is
trained on some products to help learn classification models
for some other products. In such cases, transfer learning can
save a significant amount of labeling effort [8].

In this survey paper, we give a comprehensive overview
of transfer learning for classification, regression, and cluster-
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ing developed in machine learning and data mining areas.
There has been a large amount of work on transfer learning
for reinforcement learning in the machine learning literature
(e.g., [9], [10]). However, in this paper, we only focus on
transfer learning for classification, regression, and clustering
problems that are related more closely to data mining tasks.
By doing the survey, we hope to provide a useful resource for
the data mining and machine learning community.

The rest of the survey is organized as follows: In the next
four sections, we first give a general overview and define
some notations we will use later. We, then, briefly survey the
history of transfer learning, give a unified definition of
transfer learning and categorize transfer learning into three
different settings (given in Table 2 and Fig. 2). For each
setting, we review different approaches, given in Table 3 in
detail. After that, in Section 6, we review some current
research on the topic of “negative transfer,” which happens
when knowledge transfer has a negative impact on target
learning. In Section 7, we introduce some successful
applications of transfer learning and list some published
data sets and software toolkits for transfer learning research.
Finally, we conclude the paper with a discussion of future
works in Section 8.

2 OVERVIEW

2.1 A Brief History of Transfer Learning

Traditional data mining and machine learning algorithms
make predictions on the future data using statistical models
that are trained on previously collected labeled or unlabeled
training data [11], [12], [13]. Semisupervised classification
[14], [15], [16], [17] addresses the problem that the labeled
data may be too few to build a good classifier, by making use
of a large amount of unlabeled data and a small amount of
labeled data. Variations of supervised and semisupervised
learning for imperfect data sets have been studied; for
example, Zhu and Wu [18] have studied how to deal with the
noisy class-label problems. Yang et al. considered cost-
sensitive learning [19] when additional tests can be made to
future samples. Nevertheless, most of them assume that the
distributions of the labeled and unlabeled data are the same.
Transfer learning, in contrast, allows the domains, tasks, and
distributions used in training and testing to be different. In
the real world, we observe many examples of transfer
learning. For example, we may find that learning to
recognize apples might help to recognize pears. Similarly,
learning to play the electronic organ may help facilitate
learning the piano. The study of Transfer learning is motivated
by the fact that people can intelligently apply knowledge
learned previously to solve new problems faster or with
better solutions. The fundamental motivation for Transfer
learning in the field of machine learning was discussed in a
NIPS-95 workshop on “Learning to Learn,”1 which focused
on the need for lifelong machine learning methods that retain
and reuse previously learned knowledge.

Research on transfer learning has attracted more and
more attention since 1995 in different names: learning to
learn, life-long learning, knowledge transfer, inductive

transfer, multitask learning, knowledge consolidation,
context-sensitive learning, knowledge-based inductive bias,
metalearning, and incremental/cumulative learning [20].
Among these, a closely related learning technique to
transfer learning is the multitask learning framework [21],
which tries to learn multiple tasks simultaneously even
when they are different. A typical approach for multitask
learning is to uncover the common (latent) features that can
benefit each individual task.

In 2005, the Broad Agency Announcement (BAA) 05-29
of Defense Advanced Research Projects Agency (DARPA)’s
Information Processing Technology Office (IPTO)2 gave a
new mission of transfer learning: the ability of a system to
recognize and apply knowledge and skills learned in
previous tasks to novel tasks. In this definition, transfer
learning aims to extract the knowledge from one or more
source tasks and applies the knowledge to a target task. In
contrast to multitask learning, rather than learning all of the
source and target tasks simultaneously, transfer learning
cares most about the target task. The roles of the source and
target tasks are no longer symmetric in transfer learning.

Fig. 1 shows the difference between the learning processes
of traditional and transfer learning techniques. As we can
see, traditional machine learning techniques try to learn each
task from scratch, while transfer learning techniques try to
transfer the knowledge from some previous tasks to a target
task when the latter has fewer high-quality training data.

Today, transfer learning methods appear in several top
venues, most notably in data mining (ACM KDD, IEEE
ICDM, and PKDD, for example), machine learning (ICML,
NIPS, ECML, AAAI, and IJCAI, for example) and applica-
tions of machine learning and data mining (ACM SIGIR,
WWW, and ACL, for example).3 Before we give different
categorizations of transfer learning, we first describe the
notations used in this paper.

2.2 Notations and Definitions

In this section, we introduce some notations and definitions
that are used in this survey. First of all, we give the
definitions of a “domain” and a “task,” respectively.

In this survey, a domain D consists of two components: a
feature spaceX and a marginal probability distributionP ðXÞ,
whereX ¼ fx1; . . . ; xng 2 X . For example, if our learning task
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Fig. 1. Different learning processes between (a) traditional machine
learning and (b) transfer learning.

1. http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95_LTL/
transfer.workshop.1995.html.

2. http://www.darpa.mil/ipto/programs/tl/tl.asp.
3. We summarize a list of conferences and workshops where transfer

learning papers appear in these few years in the following webpage for
reference, http://www.cse.ust.hk/~sinnopan/conferenceTL.htm.



is document classification, and each term is taken as a binary
feature, thenX is the space of all term vectors,xi is the ith term
vector corresponding to some documents, and X is a
particular learning sample. In general, if two domains are
different, then they may have different feature spaces or
different marginal probability distributions.

Given a specific domain, D ¼ fX ; P ðXÞg, a task consists
of two components: a label space Y and an objective
predictive function fð�Þ (denoted by T ¼ fY; fð�Þg), which is
not observed but can be learned from the training data,
which consist of pairs fxi; yig, where xi 2 X and yi 2 Y. The
function fð�Þ can be used to predict the corresponding label,
fðxÞ, of a new instance x. From a probabilistic viewpoint,
fðxÞ can be written as P ðyjxÞ. In our document classification
example, Y is the set of all labels, which is True, False for a
binary classification task, and yi is “True” or “False.”

For simplicity, in this survey, we only consider the case
where there is one source domainDS , and one target domain,
DT , as this is by far the most popular of the research works in
the literature. More specifically, we denote the source domain
data as DS ¼ fðxS1

; yS1
Þ; . . . ; ðxSnS ; ySnS Þg, where xSi 2 XS is

the data instance and ySi 2 YS is the corresponding class
label. In our document classification example,DS can be a set
of term vectors together with their associated true or false
class labels. Similarly, we denote the target-domain data as
DT ¼ fðxT1

; yT1
Þ; . . . ; ðxTnT ; yTnT Þg, where the input xTi is in

XT and yTi 2 YT is the corresponding output. In most cases,
0 � nT � nS .

We now give a unified definition of transfer learning.

Definition 1 (Transfer Learning). Given a source domain DS
and learning task T S , a target domain DT and learning task
T T , transfer learning aims to help improve the learning of the
target predictive function fT ð�Þ in DT using the knowledge in
DS and T S , where DS 6¼ DT , or T S 6¼ T T .

In the above definition, a domain is a pairD ¼ fX ; P ðXÞg.
Thus, the condition DS 6¼ DT implies that either XS 6¼ XT or
PSðXÞ 6¼ PT ðXÞ. For example, in our document classification
example, this means that between a source document set and
a target document set, either the term features are different
between the two sets (e.g., they use different languages), or
their marginal distributions are different.

Similarly, a task is defined as a pair T ¼ fY; P ðY jXÞg.
Thus, the condition T S 6¼ T T implies that either YS 6¼ YT or
P ðYSjXSÞ 6¼ P ðYT jXT Þ. When the target and source domains
are the same, i.e., DS ¼ DT , and their learning tasks are the
same, i.e., T S ¼ T T , the learning problem becomes a
traditional machine learning problem. When the domains
are different, then either 1) the feature spaces between the
domains are different, i.e., XS 6¼ XT , or 2) the feature spaces
between the domains are the same but the marginal

probability distributions between domain data are different;
i.e., P ðXSÞ 6¼ P ðXT Þ, where XSi 2 XS and XTi 2 XT . As an
example, in our document classification example, case 1
corresponds to when the two sets of documents are
described in different languages, and case 2 may correspond
to when the source domain documents and the target-
domain documents focus on different topics.

Given specific domains DS and DT , when the learning
tasks T S and T T are different, then either 1) the label
spaces between the domains are different, i.e., YS 6¼ YT , or
2) the conditional probability distributions between the
domains are different; i.e., P ðYSjXSÞ 6¼ P ðYT jXT Þ, where
YSi 2 YS and YTi 2 YT . In our document classification
example, case 1 corresponds to the situation where source
domain has binary document classes, whereas the target
domain has 10 classes to classify the documents to. Case 2
corresponds to the situation where the source and target
documents are very unbalanced in terms of the user-
defined classes.

In addition, when there exists some relationship, explicit
or implicit, between the feature spaces of the two domains,
we say that the source and target domains are related.

2.3 A Categorization of
Transfer Learning Techniques

In transfer learning, we have the following three main
research issues: 1) what to transfer, 2) how to transfer, and
3) when to transfer.

“What to transfer” asks which part of knowledge can be
transferred across domains or tasks. Some knowledge is
specific for individual domains or tasks, and some knowl-
edge may be common between different domains such that
they may help improve performance for the target domain or
task. After discovering which knowledge can be transferred,
learning algorithms need to be developed to transfer the
knowledge, which corresponds to the “how to transfer” issue.

“When to transfer” asks in which situations, transferring
skills should be done. Likewise, we are interested in
knowing in which situations, knowledge should not be
transferred. In some situations, when the source domain
and target domain are not related to each other, brute-force
transfer may be unsuccessful. In the worst case, it may
even hurt the performance of learning in the target
domain, a situation which is often referred to as negative
transfer. Most current work on transfer learning focuses on
“What to transfer” and “How to transfer,” by implicitly
assuming that the source and target domains be related to
each other. However, how to avoid negative transfer is an
important open issue that is attracting more and more
attention in the future.

Based on the definition of transfer learning, we summarize
the relationship between traditional machine learning and
various transfer learning settings in Table 1, where we
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categorize transfer learning under three subsettings, inductive
transfer learning, transductive transfer learning, and unsuper-
vised transfer learning, based on different situations between
the source and target domains and tasks.

1. In the inductive transfer learning setting, the target task
is different from the source task, no matter when the
source and target domains are the same or not.

In this case, some labeled data in the target
domain are required to induce an objective predictive
model fT ð�Þ for use in the target domain. In addition,
according to different situations of labeled and
unlabeled data in the source domain, we can further
categorize the inductive transfer learning setting into
two cases:

a. A lot of labeled data in the source domain are
available. In this case, the inductive transfer
learning setting is similar to the multitask learning
setting. However, the inductive transfer learning
setting only aims at achieving high performance
in the target task by transferring knowledge from
the source task while multitask learning tries to
learn the target and source task simultaneously.

b. No labeled data in the source domain are
available. In this case, the inductive transfer
learning setting is similar to the self-taught
learning setting, which is first proposed by Raina
et al. [22]. In the self-taught learning setting, the
label spaces between the source and target
domains may be different, which implies the
side information of the source domain cannot be
used directly. Thus, it’s similar to the inductive
transfer learning setting where the labeled data
in the source domain are unavailable.

2. In the transductive transfer learning setting, the source
and target tasks are the same, while the source and
target domains are different.

In this situation, no labeled data in the target
domain are available while a lot of labeled data in
the source domain are available. In addition,
according to different situations between the source
and target domains, we can further categorize the
transductive transfer learning setting into two cases.

a. The feature spaces between the source and
target domains are different, XS 6¼ XT .

b. The feature spaces between domains are the
same, XS ¼ XT , but the marginal probability

distributions of the input data are different,
P ðXSÞ 6¼ P ðXT Þ.

The latter case of the transductive transfer
learning setting is related to domain adaptation
for knowledge transfer in text classification [23]
and sample selection bias [24] or covariate shift
[25], whose assumptions are similar.

3. Finally, in the unsupervised transfer learning setting,
similar to inductive transfer learning setting, the target
task is different from but related to the source task.
However, the unsupervised transfer learning focus on
solving unsupervised learning tasks in the target
domain, such as clustering, dimensionality reduction,
and density estimation [26], [27]. In this case, there are
no labeled data available in both source and target
domains in training.

The relationship between the different settings of
transfer learning and the related areas are summarized in
Table 2 and Fig. 2.

Approaches to transfer learning in the above three
different settings can be summarized into four cases based
on “What to transfer.” Table 3 shows these four cases and
brief description. The first context can be referred to as
instance-based transfer learning (or instance transfer)
approach [6], [28], [29], [30], [31], [24], [32], [33], [34], [35],
which assumes that certain parts of the data in the source
domain can be reused for learning in the target domain by
reweighting. Instance reweighting and importance sampling
are two major techniques in this context.

A second case can be referred to as feature-representa-
tion-transfer approach [22], [36], [37], [38], [39], [8], [40],
[41], [42], [43], [44]. The intuitive idea behind this case is to
learn a “good” feature representation for the target domain.
In this case, the knowledge used to transfer across domains
is encoded into the learned feature representation. With the
new feature representation, the performance of the target
task is expected to improve significantly.

A third case can be referred to as parameter-transfer
approach [45], [46], [47], [48], [49], which assumes that the
source tasks and the target tasks share some parameters or
prior distributions of the hyperparameters of the models. The
transferred knowledge is encoded into the shared para-
meters or priors. Thus, by discovering the shared parameters
or priors, knowledge can be transferred across tasks.

Finally, the last case can be referred to as the relational-
knowledge-transfer problem [50], which deals with transfer
learning for relational domains. The basic assumption
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behind this context is that some relationship among the data
in the source and target domains is similar. Thus, the
knowledge to be transferred is the relationship among the
data. Recently, statistical relational learning techniques
dominate this context [51], [52].

Table 4 shows the cases where the different approaches
are used for each transfer learning setting. We can see that
the inductive transfer learning setting has been studied in
many research works, while the unsupervised transfer
learning setting is a relatively new research topic and only
studied in the context of the feature-representation-transfer
case. In addition, the feature-representation-transfer problem
has been proposed to all three settings of transfer learning.
However, the parameter-transfer and the relational-knowledge-
transfer approach are only studied in the inductive transfer
learning setting, which we discuss in detail below.

3 INDUCTIVE TRANSFER LEARNING

Definition 2 (Inductive Transfer Learning). Given a source

domain DS and a learning task T S , a target domain DT
and a learning task T T , inductive transfer learning aims

to help improve the learning of the target predictive function

fT ð�Þ in DT using the knowledge in DS and T S , where
T S 6¼ T T .

Based on the above definition of the inductive transfer
learning setting, a few labeled data in the target domain are
required as the training data to induce the target predictive
function. As mentioned in Section 2.3, this setting has two
cases: 1) labeled data in the source domain are available and
2) labeled data in the source domain are unavailable while
unlabeled data in the source domain are available. Most
transfer learning approaches in this setting focus on the
former case.

3.1 Transferring Knowledge of Instances

The instance-transfer approach to the inductive transfer
learning setting is intuitively appealing: although the source
domain data cannot be reused directly, there are certain
parts of the data that can still be reused together with a few
labeled data in the target domain.

Dai et al. [6] proposed a boosting algorithm, TrAdaBoost,
which is an extension of the AdaBoost algorithm, to address
the inductive transfer learning problems. TrAdaBoost assumes
that the source and target-domain data use exactly the same
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set of features and labels, but the distributions of the data in
the two domains are different. In addition, TrAdaBoost
assumes that, due to the difference in distributions between
the source and the target domains, some of the source
domain data may be useful in learning for the target
domain but some of them may not and could even be
harmful. It attempts to iteratively reweight the source
domain data to reduce the effect of the “bad” source data
while encourage the “good” source data to contribute more
for the target domain. For each round of iteration,
TrAdaBoost trains the base classifier on the weighted source
and target data. The error is only calculated on the target
data. Furthermore, TrAdaBoost uses the same strategy as
AdaBoost to update the incorrectly classified examples in the
target domain while using a different strategy from
AdaBoost to update the incorrectly classified source exam-
ples in the source domain. Theoretical analysis of TrAda-
Boost in also given in [6].

Jiang and Zhai [30] proposed a heuristic method to
remove “misleading” training examples from the source
domain based on the difference between conditional
probabilities P ðyT jxT Þ and P ðySjxSÞ. Liao et al. [31]
proposed a new active learning method to select the
unlabeled data in a target domain to be labeled with the
help of the source domain data. Wu and Dietterich [53]
integrated the source domain (auxiliary) data an Support
Vector Machine (SVM) framework for improving the
classification performance.

3.2 Transferring Knowledge of Feature
Representations

The feature-representation-transfer approach to the induc-
tive transfer learning problem aims at finding “good” feature
representations to minimize domain divergence and classi-
fication or regression model error. Strategies to find “good”
feature representations are different for different types of
the source domain data. If a lot of labeled data in the source
domain are available, supervised learning methods can be
used to construct a feature representation. This is similar to
common feature learning in the field of multitask learning
[40]. If no labeled data in the source domain are available,
unsupervised learning methods are proposed to construct
the feature representation.

3.2.1 Supervised Feature Construction

Supervised feature construction methods for the inductive
transfer learning setting are similar to those used in multitask
learning. The basic idea is to learn a low-dimensional
representation that is shared across related tasks. In
addition, the learned new representation can reduce the
classification or regression model error of each task as well.
Argyriou et al. [40] proposed a sparse feature learning
method for multitask learning. In the inductive transfer

learning setting, the common features can be learned by
solving an optimization problem, given as follows:

arg min
A;U

X
t2fT;Sg

Xnt
i¼1

Lðyti ; hat; UTxtiiÞ þ �kAk
2
2;1

s:t: U 2 Od:

ð1Þ

In this equation, S and T denote the tasks in the source
domain and target domain, respectively. A ¼ ½aS; aT � 2 Rd�2

is a matrix of parameters. U is a d� d orthogonal matrix
(mapping function) for mapping the original high-dimen-
sional data to low-dimensional representations. The ðr; pÞ-
norm of A is defined as kAkr;p :¼ ð

Pd
i¼1 kaik

p
rÞ

1
p. The

optimization problem (1) estimates the low-dimensional
representations UTXT , UTXS and the parameters, A, of the
model at the same time. The optimization problem (1) can
be further transformed into an equivalent convex optimiza-
tion formulation and be solved efficiently. In a follow-up
work, Argyriou et al. [41] proposed a spectral regularization
framework on matrices for multitask structure learning.

Lee et al. [42] proposed a convex optimization algorithm
for simultaneously learning metapriors and feature weights
from an ensemble of related prediction tasks. The meta-
priors can be transferred among different tasks. Jebara [43]
proposed to select features for multitask learning with
SVMs. Rückert and Kramer [54] designed a kernel-based
approach to inductive transfer, which aims at finding a
suitable kernel for the target data.

3.2.2 Unsupervised Feature Construction

In [22], Raina et al. proposed to apply sparse coding [55],
which is an unsupervised feature construction method, for
learning higher level features for transfer learning. The basic
idea of this approach consists of two steps. In the first step,
higher level basis vectors b ¼ fb1; b2; . . . ; bsg are learned on
the source domain data by solving the optimization
problem (2) as shown as follows:

min
a;b

X
i

xSi �
X
j

ajSibj

�����
�����

2

2

þ �
��aSi��1

s:t: kbjk2 � 1; 8j 2 1; . . . ; s:

ð2Þ

In this equation, ajSi is a new representation of basis bj for
input xSi and � is a coefficient to balance the feature
construction term and the regularization term. After learning
the basis vectors b, in the second step, an optimization
algorithm (3) is applied on the target-domain data to learn
higher level features based on the basis vectors b.

a�Ti ¼ arg min
aTi

xTi �
X
j

ajTibj

�����
�����

2

2

þ �
��aTi��1

: ð3Þ
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Finally, discriminative algorithms can be applied to fa�Tig
0s

with corresponding labels to train classification or regres-
sion models for use in the target domain. One drawback of
this method is that the so-called higher level basis vectors
learned on the source domain in the optimization problem
(2) may not be suitable for use in the target domain.

Recently, manifold learning methods have been
adapted for transfer learning. In [44], Wang and Mahade-
van proposed a Procrustes analysis-based approach to
manifold alignment without correspondences, which can
be used to transfer the knowledge across domains via the
aligned manifolds.

3.3 Transferring Knowledge of Parameters

Most parameter-transfer approaches to the inductive transfer
learning setting assume that individual models for related
tasks should share some parameters or prior distributions
of hyperparameters. Most approaches described in this
section, including a regularization framework and a
hierarchical Bayesian framework, are designed to work
under multitask learning. However, they can be easily
modified for transfer learning. As mentioned above, multi-
task learning tries to learn both the source and target tasks
simultaneously and perfectly, while transfer learning only
aims at boosting the performance of the target domain by
utilizing the source domain data. Thus, in multitask
learning, weights of the loss functions for the source and
target data are the same. In contrast, in transfer learning,
weights in the loss functions for different domains can be
different. Intuitively, we may assign a larger weight to the
loss function of the target domain to make sure that we can
achieve better performance in the target domain.

Lawrence and Platt [45] proposed an efficient algorithm
known as MT-IVM, which is based on Gaussian Processes
(GP), to handle the multitask learning case. MT-IVM tries to
learn parameters of a Gaussian Process over multiple tasks
by sharing the same GP prior. Bonilla et al. [46] also
investigated multitask learning in the context of GP. The
authors proposed to use a free-form covariance matrix over
tasks to model intertask dependencies, where a GP prior is
used to induce correlations between tasks. Schwaighofer
et al. [47] proposed to use a hierarchical Bayesian frame-
work (HB) together with GP for multitask learning.

Besides transferring the priors of the GP models, some
researchers also proposed to transfer parameters of SVMs
under a regularization framework. Evgeniou and Pontil [48]
borrowed the idea of HB to SVMs for multitask learning.
The proposed method assumed that the parameter, w, in
SVMs for each task can be separated into two terms. One is
a common term over tasks and the other is a task-specific
term. In inductive transfer learning,

wS ¼ w0 þ vS and wT ¼ w0 þ vT ;

where wS and wT are parameters of the SVMs for the source
task and the target learning task, respectively. w0 is a
common parameter while vS and vT are specific parameters
for the source task and the target task, respectively. By
assuming ft ¼ wt � x to be a hyperplane for task t, an
extension of SVMs to multitask learning case can be written
as the following:

min
w0;vt;�ti

Jðw0; vt; �tiÞ

¼
X

t2fS;Tg

Xnt
i¼1

�ti þ
�1

2

X
t2fS;Tg

kvtk2 þ �2kw0k2

s:t: ytiðw0 þ vtÞ � xti 	 1� �ti ;
�ti 	 0; i 2 f1; 2; . . . ; ntg and t 2 fS; Tg:

ð4Þ

By solving the optimization problem above, we can learn
the parameters w0, vS , and vT simultaneously.

Several researchers have pursued the parameter-transfer
approach further. Gao et al. [49] proposed a locally
weighted ensemble learning framework to combine multi-
ple models for transfer learning, where the weights are
dynamically assigned according to a model’s predictive
power on each test example in the target domain.

3.4 Transferring Relational Knowledge

Different from other three contexts, the relational-knowl-
edge-transfer approach deals with transfer learning pro-
blems in relational domains, where the data are non-i.i.d. and
can be represented by multiple relations, such as networked
data and social network data. This approach does not assume
that the data drawn from each domain be independent and
identically distributed (i.i.d.) as traditionally assumed. It
tries to transfer the relationship among data from a source
domain to a target domain. In this context, statistical relational
learning techniques are proposed to solve these problems.

Mihalkova et al. [50] proposed an algorithm TAMAR that
transfers relational knowledge with Markov Logic Net-
works (MLNs) across relational domains. MLNs [56] is a
powerful formalism, which combines the compact expres-
siveness of first-order logic with flexibility of probability,
for statistical relational learning. In MLNs, entities in a
relational domain are represented by predicates and their
relationships are represented in first-order logic. TAMAR is
motivated by the fact that if two domains are related to each
other, there may exist mappings to connect entities and
their relationships from a source domain to a target domain.
For example, a professor can be considered as playing a
similar role in an academic domain as a manager in an
industrial management domain. In addition, the relation-
ship between a professor and his or her students is similar
to the relationship between a manager and his or her
workers. Thus, there may exist a mapping from professor to
manager and a mapping from the professor-student
relationship to the manager-worker relationship. In this
vein, TAMAR tries to use an MLN learned for a source
domain to aid in the learning of an MLN for a target
domain. Basically, TAMAR is a two-stage algorithm. In the
first step, a mapping is constructed from a source MLN to
the target domain based on weighted pseudo log-likelihood
measure (WPLL). In the second step, a revision is done for
the mapped structure in the target domain through the
FORTE algorithm [57], which is an inductive logic
programming (ILP) algorithm for revising first-order
theories. The revised MLN can be used as a relational
model for inference or reasoning in the target domain.

In the AAAI-2008 workshop on transfer learning for
complex tasks,4 Mihalkova and Mooney [51] extended
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TAMAR to the single-entity-centered setting of transfer
learning, where only one entity in a target domain is
available. Davis and Domingos [52] proposed an approach
to transferring relational knowledge based on a form of
second-order Markov logic. The basic idea of the algorithm
is to discover structural regularities in the source domain in
the form of Markov logic formulas with predicate variables,
by instantiating these formulas with predicates from the
target domain.

4 TRANSDUCTIVE TRANSFER LEARNING

The term transductive transfer learning was first proposed by
Arnold et al. [58], where they required that the source and
target tasks be the same, although the domains may be
different. On top of these conditions, they further required
that all unlabeled data in the target domain are available at
training time, but we believe that this condition can be
relaxed; instead, in our definition of the transductive transfer
learning setting, we only require that part of the unlabeled
target data be seen at training time in order to obtain the
marginal probability for the target data.

Note that the word “transductive” is used with several
meanings. In the traditional machine learning setting,
transductive learning [59] refers to the situation where all
test data are required to be seen at training time, and that
the learned model cannot be reused for future data. Thus,
when some new test data arrive, they must be classified
together with all existing data. In our categorization of
transfer learning, in contrast, we use the term transductive to
emphasize the concept that in this type of transfer learning,
the tasks must be the same and there must be some
unlabeled data available in the target domain.

Definition 3 (Transductive Transfer Learning). Given a
source domain DS and a corresponding learning task T S , a
target domain DT and a corresponding learning task T T ,
transductive transfer learning aims to improve the learning of
the target predictive function fT ð�Þ inDT using the knowledge in
DS and T S , where DS 6¼ DT and T S ¼ T T . In addition, some
unlabeled target-domain data must be available at training time.

This definition covers the work of Arnold et al. [58], since
the latter considered domain adaptation, where the difference
lies between the marginal probability distributions of
source and target data; i.e., the tasks are the same but the
domains are different.

Similar to the traditional transductive learning setting,
which aims to make the best use of the unlabeled test data
for learning, in our classification scheme under transductive
transfer learning, we also assume that some target-domain
unlabeled data be given. In the above definition of
transductive transfer learning, the source and target tasks
are the same, which implies that one can adapt the
predictive function learned in the source domain for use
in the target domain through some unlabeled target-domain
data. As mentioned in Section 2.3, this setting can be split to
two cases: 1) The feature spaces between the source and
target domains are different, XS 6¼ XT , and 2) the feature
spaces between domains are the same, XS ¼ XT , but the
marginal probability distributions of the input data are
different, P ðXSÞ 6¼ P ðXT Þ. This is similar to the require-
ments in domain adaptation and sample selection bias.

Most approaches described in the following sections are
related to case 2 above.

4.1 Transferring the Knowledge of Instances

Most instance-transfer approaches to the transductive
transfer learning setting are motivated by importance
sampling. To see how importance-sampling-based methods
may help in this setting, we first review the problem of
empirical risk minimization (ERM) [60]. In general, we
might want to learn the optimal parameters �� of the model
by minimizing the expected risk,

�� ¼ arg min
�2�

EEðx;yÞ2P ½lðx; y; �Þ�;

where lðx; y; �Þ is a loss function that depends on the
parameter �. However, since it is hard to estimate the
probability distribution P , we choose to minimize the ERM
instead,

�� ¼ arg min
�2�

1

n

Xn
i¼1

½lðxi; yi; �Þ�;

where n is size of the training data.
In the transductive transfer learning setting, we want to

learn an optimal model for the target domain by minimiz-
ing the expected risk,

�� ¼ arg min
�2�

X
ðx;yÞ2DT

P ðDT Þlðx; y; �Þ:

However, since no labeled data in the target domain are
observed in training data, we have to learn a model from
the source domain data instead. If P ðDSÞ ¼ P ðDT Þ, then we
may simply learn the model by solving the following
optimization problem for use in the target domain,

�� ¼ arg min
�2�

X
ðx;yÞ2DS

P ðDSÞlðx; y; �Þ:

Otherwise, when P ðDSÞ 6¼ P ðDT Þ, we need to modify the
above optimization problem to learn a model with high
generalization ability for the target domain, as follows:

�� ¼ arg min
�2�

X
ðx;yÞ2DS

P ðDT Þ
P ðDSÞ

P ðDSÞlðx; y; �Þ


 arg min
�2�

XnS
i¼1

PT ðxTi ; yTiÞ
PSðxSi ; ySiÞ

lðxSi ; ySi ; �Þ:
ð5Þ

Therefore, by adding different penalty values to each instance

ðxSi ; ySiÞ with the corresponding weight
PT ðxTi ;yTi Þ
PSðxSi ;ySi Þ

, we can

learn a precise model for the target domain. Furthermore,

since P ðYT jXT Þ ¼ P ðYSjXSÞ. Thus, the difference between

P ðDSÞ and P ðDT Þ is caused by P ðXSÞ and P ðXT Þ and

PT ðxTi ; yTiÞ
PSðxSi ; ySiÞ

¼ P ðxSiÞ
P ðxTiÞ

:

If we can estimate
P ðxSi Þ
P ðxTi Þ

for each instance, we can solve the
transductive transfer learning problems.

There exist various ways to estimate
P ðxSi Þ
P ðxTi Þ

. Zadrozny [24]

proposed to estimate the terms P ðxSiÞ and P ðxTiÞ indepen-

dently by constructing simple classification problems.
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Fan et al. [35] further analyzed the problems by using

various classifiers to estimate the probability ratio. Huang

et al. [32] proposed a kernel-mean matching (KMM)

algorithm to learn
P ðxSi Þ
P ðxTi Þ

directly by matching the means

between the source domain data and the target domain data

in a reproducing-kernel Hilbert space (RKHS). KMM can be

rewritten as the following quadratic programming (QP)

optimization problem.

min
�

1

2
�TK� � �T�

s:t: �i 2 ½0; B� and
XnS
i¼1

�i � nS

�����
����� � nS�;

ð6Þ

where

K ¼
KS;S KS;T

KT;S KT;T

� �

and Kij ¼ kðxi; xjÞ. KS;S and KT;T are kernel matrices for
the source domain data and the target domain data,
respectively. �i ¼ nS

nT

PnT
j¼1 kðxi; xTjÞ, where xi 2 XS

S
XT ,

while xTj 2 XT .

It can be proved that�i ¼
P ðxSi Þ
P ðxTi Þ

[32]. An advantage of using

KMM is that it can avoid performing density estimation of

either P ðxSiÞ or P ðxTiÞ, which is difficult when the size of the

data set is small. Sugiyama et al. [34] proposed an algorithm

known as Kullback-Leibler Importance Estimation Proce-

dure (KLIEP) to estimate
P ðxSi Þ
P ðxTi Þ

directly, based on the

minimization of the Kullback-Leibler divergence. can be

integrated with cross-validation to perform model selection

automatically in two steps: 1) estimating the weights of the

source domain data and 2) training models on the reweighted

data. Bickel et al. [33] combined the two steps in a unified

framework by deriving a kernel-logistic regression classifier.

Besides sample reweighting techniques, Dai et al. [28]

extended a traditional Naive Bayesian classifier for the

transductive transfer learning problems. For more informa-

tion on importance sampling and reweighting methods for

covariate shift or sample selection bias, readers can refer to a

recently published book [29] by Quionero-Candela et al. One

can also consult a tutorial on Sample Selection Bias by Fan

and Sugiyama in ICDM-08.5

4.2 Transferring Knowledge of Feature
Representations

Most feature-representation-transfer approaches to the
transductive transfer learning setting are under unsuper-
vised learning frameworks. Blitzer et al. [38] proposed a
structural correspondence learning (SCL) algorithm, which
extends [37], to make use of the unlabeled data from the
target domain to extract some relevant features that may
reduce the difference between the domains. The first step of
SCL is to define a set of pivot features6 (the number of pivot
feature is denoted by m) on the unlabeled data from both

domains. Then, SCL removes these pivot features from the
data and treats each pivot feature as a new label vector. The
m classification problems can be constructed. By assuming
each problem can be solved by linear classifier, which is
shown as follows:

flðxÞ ¼ sgn
�
wTl � x

�
; l ¼ 1; . . . ;m:

SCL can learn a matrix W ¼ ½w1w2 . . .wm� of parameters. In
the third step, singular value decomposition (SVD) is applied
to matrix W ¼ ½w1w2 . . .wm�. Let W ¼ UDV T , then � ¼ UT

½1:h;:�
(h is the number of the shared features) is the matrix (linear
mapping) whose rows are the top left singular vectors of W .
Finally, standard discriminative algorithms can be applied to
the augmented feature vector to build models. The augmen-
ted feature vector contains all the original feature xi
appended with the new shared features �xi. As mentioned
in [38], if the pivot features are well designed, then the
learned mapping � encodes the correspondence between the
features from the different domains. Although Ben-David
et al. [61] showed experimentally that SCL can reduce the
difference between domains; how to select the pivot features
is difficult and domain dependent. In [38], Blitzer et al. used a
heuristic method to select pivot features for natural language
processing (NLP) problems, such as tagging of sentences. In
their follow-up work, the researchers proposed to use
Mutual Information (MI) to choose the pivot features instead
of using more heuristic criteria [8]. MI-SCL tries to find some
pivot features that have high dependence on the labels in the
source domain.

Transfer learning in the NLP domain is sometimes
referred to as domain adaptation. In this area, Daumé [39]
proposed a kernel-mapping function for NLP problems,
which maps the data from both source and target domains to
a high-dimensional feature space, where standard discrimi-
native learning methods are used to train the classifiers.
However, the constructed kernel-mapping function is
domain knowledge driven. It is not easy to generalize the
kernel mapping to other areas or applications. Blitzer et al.
[62] analyzed the uniform convergence bounds for algo-
rithms that minimized a convex combination of source and
target empirical risks.

In [36], Dai et al. proposed a coclustering-based algorithm
to propagate the label information across different domains.
In [63], Xing et al. proposed a novel algorithm known as
bridged refinement to correct the labels predicted by a shift-
unaware classifier toward a target distribution and take the
mixture distribution of the training and test data as a bridge
to better transfer from the training data to the test data. In
[64], Ling et al. proposed a spectral classification framework
for cross-domain transfer learning problem, where the
objective function is introduced to seek consistency between
the in-domain supervision and the out-of-domain intrinsic
structure. In [65], Xue et al. proposed a cross-domain text
classification algorithm that extended the traditional prob-
abilistic latent semantic analysis (PLSA) algorithm to
integrate labeled and unlabeled data from different but
related domains, into a unified probabilistic model. The new
model is called Topic-bridged PLSA, or TPLSA.

Transfer learning via dimensionality reduction was
recently proposed by Pan et al. [66]. In this work, Pan et al.
exploited the Maximum Mean Discrepancy Embedding
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(MMDE) method, originally designed for dimensionality
reduction, to learn a low-dimensional space to reduce the
difference of distributions between different domains for
transductive transfer learning. However, MMDE may suffer
from its computational burden. Thus, in [67], Pan et al.
further proposed an efficient feature extraction algorithm,
known as Transfer Component Analysis (TCA) to overcome
the drawback of MMDE.

5 UNSUPERVISED TRANSFER LEARNING

Definition 4 (Unsupervised Transfer Learning). Given a
source domainDS with a learning task T S , a target domainDT
and a corresponding learning task T T , unsupervised transfer
learning aims to help improve the learning of the target
predictive function fT ð�Þ7 inDT using the knowledge inDS and
T S , where T S 6¼ T T and YS and YT are not observable.

Based on the definition of the unsupervised transfer
learning setting, no labeled data are observed in the source
and target domains in training. So far, there is little research
work on this setting. Recently, Self-taught clustering (STC)
[26] and transferred discriminative analysis (TDA) [27]
algorithms are proposed to transfer clustering and transfer
dimensionality reduction problems, respectively.

5.1 Transferring Knowledge of Feature
Representations

Dai et al. [26] studied a new case of clustering problems,
known as self-taught clustering. Self-taught clustering is an
instance of unsupervised transfer learning, which aims at
clustering a small collection of unlabeled data in the
target domain with the help of a large amount of
unlabeled data in the source domain. STC tries to learn
a common feature space across domains, which helps in
clustering in the target domain. The objective function of
STC is shown as follows:

Jð ~XT ; ~XS; ~ZÞ
¼ IðXT ;ZÞ � Ið ~XT ; ~ZÞ þ � IðXS;ZÞ � Ið ~XS; ~ZÞ

� 	
;
ð7Þ

where XS and XT are the source and target domain data,

respectively. Z is a shared feature space by XS and XT , and

Ið�; �Þ is the mutual information between two random

variables. Suppose that there exist three clustering functions

CXT
: XT ! ~XT , CXS

: XS ! ~XS , and CZ : Z ! ~Z, where
~XT , ~XS , and ~Z are corresponding clusters of XT , XS , and Z,

respectively. The goal of STC is to learn ~XT by solving the

optimization problem (7):

arg min
~XT ; ~XS; ~Z

Jð ~XT ; ~XS; ~ZÞ: ð8Þ

An iterative algorithm for solving the optimization function
(8) was given in [26].

Similarly, Wang et al. [27] proposed a TDA algorithm to
solve the transfer dimensionality reduction problem. TDA first
applies clustering methods to generate pseudoclass labels
for the target unlabeled data. It then applies dimensionality
reduction methods to the target data and labeled source

data to reduce the dimensions. These two steps run
iteratively to find the best subspace for the target data.

6 TRANSFER BOUNDS AND NEGATIVE TRANSFER

An important issue is to recognize the limit of the power of
transfer learning. In [68], Mahmud and Ray analyzed the
case of transfer learning using Kolmogorov complexity,
where some theoretical bounds are proved. In particular,
the authors used conditional Kolmogorov complexity to
measure relatedness between tasks and transfer the “right”
amount of information in a sequential transfer learning task
under a Bayesian framework.

Recently, Eaton et al. [69] proposed a novel graph-based
method for knowledge transfer, where the relationships
between source tasks are modeled by embedding the set of
learned source models in a graph using transferability as the
metric. Transferring to a new task proceeds by mapping the
problem into the graph and then learning a function on this
graph that automatically determines the parameters to
transfer to the new learning task.

Negative transfer happens when the source domain data
and task contribute to the reduced performance of learning
in the target domain. Despite the fact that how to avoid
negative transfer is a very important issue, little research
work has been published on this topic. Rosenstein et al. [70]
empirically showed that if two tasks are too dissimilar, then
brute-force transfer may hurt the performance of the target
task. Some works have been exploited to analyze related-
ness among tasks and task clustering techniques, such as
[71], [72], which may help provide guidance on how to
avoid negative transfer automatically. Bakker and Heskes
[72] adopted a Bayesian approach in which some of the
model parameters are shared for all tasks and others more
loosely connected through a joint prior distribution that can
be learned from the data. Thus, the data are clustered based
on the task parameters, where tasks in the same cluster are
supposed to be related to each other. Argyriou et al. [73]
considered situations in which the learning tasks can be
divided into groups. Tasks within each group are related by
sharing a low-dimensional representation, which differs
among different groups. As a result, tasks within a group
can find it easier to transfer useful knowledge.

7 APPLICATIONS OF TRANSFER LEARNING

Recently, transfer learning techniques have been applied
successfully in many real-world applications. Raina et al.
[74] and Dai et al. [36], [28] proposed to use transfer
learning techniques to learn text data across domains,
respectively. Blitzer et al. [38] proposed to use SCL for
solving NLP problems. An extension of SCL was proposed
in [8] for solving sentiment classification problems. Wu and
Dietterich [53] proposed to use both inadequate target
domain data and plenty of low quality source domain data
for image classification problems. Arnold et al. [58]
proposed to use transductive transfer learning methods to
solve name-entity recognition problems. In [75], [76], [77],
[78], [79], transfer learning techniques are proposed to
extract knowledge from WiFi localization models across
time periods, space, and mobile devices, to benefit WiFi

1354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 10, OCTOBER 2010

7. In unsupervised transfer learning, the predicted labels are latent
variables, such as clusters or reduced dimensions.



localization tasks in other settings. Zhuo et al. [80] studied
how to transfer domain knowledge to learn relational action
models across domains in automated planning.

In [81], Raykar et al. proposed a novel Bayesian multiple-
instance learning algorithm, which can automatically identi-
fy the relevant feature subset and use inductive transfer for
learning multiple, but conceptually related, classifiers, for
computer aided design (CAD). In [82], Ling et al. proposed
an information-theoretic approach for transfer learning to
address the cross-language classification problem for translating
webpages from English to Chinese. The approach addressed
the problem when there are plenty of labeled English text
data whereas there are only a small number of labeled
Chinese text documents. Transfer learning across the two
feature spaces are achieved by designing a suitable mapping
function as a bridge.

So far, there are at least two international competitions
based on transfer learning, which made available some much
needed public data. In the ECML/PKDD-2006 discovery
challenge,8 the task was to handle personalized spam
filtering and generalization across related learning tasks.
For training a spam-filtering system, we need to collect a lot
of e-mails from a group of users with corresponding labels:
spam or not spam, and train a classifier based on these data.
For a new e-mail user, we might want to adapt the learned
model for the user. The challenge is that the distributions of
emails for the first set of users and the new user are different.
Thus, this problem can be modeled as an inductive transfer
learning problem, which aims to adapt an old spam-filtering
model to a new situation with fewer training data and less
training time.

A second data set was made available through the
ICDM-2007 Contest, in which a task was to estimate a WiFi
client’s indoor locations using the WiFi signal data obtained
over different periods of time [83]. Since the values of WiFi
signal strength may be a function of time, space, and
devices, distributions of WiFi data over different time
periods may be very different. Thus, transfer learning must
be designed to reduce the data relabeling effort.

Data sets for transfer learning. So far, several data sets
have been published for transfer learning research. We
denote the text mining data sets, Email spam-filtering data
set, the WiFi localization over time periods data set, and the
Sentiment classification data set by Text, E-mail, WiFi, and
Sen, respectively.

1. Text. Three data sets, 20 Newsgroups, SRAA, and
Reuters-21578,9 have been preprocessed for a trans-
fer learning setting by some researchers. The data in
these data sets are categorized to a hierarchical
structure. Data from different subcategories under
the same parent category are considered to be from
different but related domains. The task is to predict
the labels of the parent category.

2. E-mail. This data set is provided by the 2006 ECML/
PKDD discovery challenge.

3. WiFi. This data set is provided by the ICDM-2007
Contest.10 The data were collected inside a building

for localization around 145:5� 37:5 m2 in two
different time periods.

4. Sen. This data set was first used in [8].11 This data
set contains product reviews downloaded from
Amazon.com from four product types (domains):
Kitchen, Books, DVDs, and Electronics. Each
domain has several thousand reviews, but the
exact number varies by domain. Reviews contain
star ratings (1-5 stars).

Empirical evaluation. To show how much benefit
transfer learning methods can bring as compared to
traditional learning methods, researchers have used some
public data sets. We show a list taken from some published
transfer learning papers in Table 5. In [6], [84], [49], the
authors used the 20 Newsgroups data12 as one of the
evaluation data sets. Due to the differences in the pre-
processing steps of the algorithms by different researchers,
it is hard to compare the proposed methods directly. Thus,
we denote them by 20-Newsgroups1, 20-Newsgroups2, and
20-Newsgroups3, respectively, and show the comparison
results between the proposed transfer learning methods
and nontransfer learning methods in the table.

On the 20 Newsgroups1 data, Dai et al. [6] showed the
comparison experiments between standard SVM and the
proposed TrAdaBoost algorithm. On 20 Newsgroups2, Shi
et al. [84] applied an active learning algorithm to select
important instances for transfer learning (AcTraK) with
TrAdaBoost and standard SVM. Gao et al. [49] evaluated
their proposed locally weighted ensemble learning algo-
rithms, pLWE and LWE, on the 20 Newsgroups3, compared
to SVM and Logistic Regression (LR).

In addition, in the table, we also show the comparison
results on the sentiment classification data set reported in
[8]. On this data set, SGD denotes the stochastic gradient-
descent algorithm with Huber loss, SCL represents a linear
predictor on the new representations learned by Structural
Correspondence Learning algorithm, and SCL-MI is an
extension of SCL by applying Mutual Information to select
the pivot features for the SCL algorithm.

Finally, on the WiFi localization data set, we show the
comparison results reported in [67], where the baseline is a
regularized least square regression model (RLSR), which is
a standard regression model, and KPCA, which represents
to apply RLSR on the new representations of the data
learned by Kernel Principle Component Analysis. The
compared transfer learning methods include KMM and
the proposed algorithm, TCA. For more detail about the
experimental results, the readers may refer to the reference
papers showed in the table. From these comparison results,
we can find that the transfer learning methods designed
appropriately for real-world applications can indeed im-
prove the performance significantly compared to the
nontransfer learning methods.

Toolboxes for transfer learning. Researchers at UC
Berkeley provided a MATLAB toolkit for transfer learn-
ing.13 The toolkit contains algorithms and benchmark data
sets for transfer learning. In addition, it provides a standard
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platform for developing and testing new algorithms for

transfer learning.

7.1 Other Applications of Transfer Learning

Transfer learning has found many applications in sequen-

tial machine learning as well. For example, Kuhlmann and

Stone [85] proposed a graph-based method for identifying

previously encountered games, and applied this technique

to automate domain mapping for value function transfer

and speed up reinforcement learning on variants of

previously played games. A new approach to transfer

between entirely different feature spaces is proposed in

translated learning, which is made possible by learning a

mapping function for bridging features in two entirely

different domains (images and text) [86]. Finally, Li et al.

[87], [88] have applied transfer learning to collaborative

filtering problems to solve the cold start and sparsity

problems. In [87], Li et al. learned a shared rating-pattern

mixture model, known as a Rating-Matrix Generative

Model (RMGM), in terms of the latent user- and item-

cluster variables. RMGM bridges multiple rating matrices

from different domains by mapping the users and items in

each rating matrix onto the shared latent user and item

spaces in order to transfer useful knowledge. In [88], they

applied coclustering algorithms on users and items in an

auxiliary rating matrix. They then constructed a cluster-
level rating matrix known as a codebook. By assuming the
target rating matrix (on movies) is related to the auxiliary
one (on books), the target domain can be reconstructed by
expanding the codebook, completing the knowledge trans-
fer process.

8 CONCLUSIONS

In this survey paper, we have reviewed several current
trends of transfer learning. Transfer learning is classified to
three different settings: inductive transfer learning, trans-
ductive transfer learning, and unsupervised transfer learn-
ing. Most previous works focused on the former two
settings. Unsupervised transfer learning may attract more
and more attention in the future.

Furthermore, each of the approaches to transfer learning
can be classified into four contexts based on “what to
transfer” in learning. They include the instance-transfer
approach, the feature-representation-transfer approach, the
parameter-transfer approach, and the relational-knowledge-
transfer approach, respectively. The former three contexts
have an i.i.d. assumption on the data while the last context
deals with transfer learning on relational data. Most of these
approaches assume that the selected source domain is
related to the target domain.
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In the future, several important research issues need to be
addressed. First, how to avoid negative transfer is an open
problem. As mentioned in Section 6, many proposed transfer
learning algorithms assume that the source and target
domains are related to each other in some sense. However,
if the assumption does not hold, negative transfer may
happen, which may cause the learner to perform worse than
no transferring at all. Thus, how to make sure that no
negative transfer happens is a crucial issue in transfer
learning. In order to avoid negative transfer learning, we
need to first study transferability between source domains or
tasks and target domains or tasks. Based on suitable
transferability measures, we can then select relevant source
domains or tasks to extract knowledge from for learning the
target tasks. To define the transferability between domains
and tasks, we also need to define the criteria to measure the
similarity between domains or tasks. Based on the distance
measures, we can then cluster domains or tasks, which may
help measure transferability. A related issue is when an
entire domain cannot be used for transfer learning, whether
we can still transfer part of the domain for useful learning in
the target domain.

In addition, most existing transfer learning algorithms
so far focused on improving generalization across differ-
ent distributions between source and target domains or
tasks. In doing so, they assumed that the feature spaces
between the source and target domains are the same.
However, in many applications, we may wish to transfer
knowledge across domains or tasks that have different
feature spaces, and transfer from multiple such source
domains. We refer to this type of transfer learning as
heterogeneous transfer learning.

Finally, so far, transfer learning techniques have been
mainly applied to small scale applications with a limited
variety, such as sensor-network-based localization, text
classification, and image classification problems. In the
future, transfer learning techniques will be widely used to
solve other challenging applications, such as video classi-
fication, social network analysis, and logical inference.
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